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ABSTRACT

The local theory of singular points is extended to a large class of

linear, second-order, ordinary differential equations which can be physical

Schroedinger equations or govern the modulation of real oscillators or

waves. In addition to Langer's fractional turning points, such equations

admit highly irregular points at which the coefficients of the differential

equation can be almost arbitrarily multivalued. Genuine coalescence of

singular points, however, is not considered. A local representation of

solution structure is established which generalizes Frobenius' method of power

series. Some results on solution symmetry have striking, global implications

in the shortwave limit.
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SIGNIFICANCE AND EXPLANATION

This work concerns the modulation of waves or oscillating systems, which

pervade all the science and engineering disciplines. Modulation occurs when

waves travel through an inhomogeneous material in which the local propagation

velocity differs from place to place, but the differences are small over a

distance of only a wavelength -- a very common case in the sciences and

engineering. The resulting change to the waves is mostly gradual, but

occasionally drastic, as at a shadow-boundary, where oscillation turns into

decay and quiescence over just a few wavelengths. When this phenomenon can be

analyzed via an ordinary differential equation, such a boundary is called a

transition point.

At first, only the simplest transition points representing the most

typical shadow boundaries were studied. But then some phenomena, such as wave

reflection and scattering cross-sections, came to be traced to hidden

transition points that become visible only when real distance (or time) is

embedded in its complex plane. When the material properties vary in a general

manner, (which can often be observed only incompletely) the hidden transition

points can have arbitrarily complex structure. The following work explores

that structure in detail in order to contribute to the technical basis for a

reform of the theory that will make it simpler and more and will ,

furnish the tools for more efficient scattering calculations.,/

.

The responsibility for the wording and views expressed in this descriptiv
summary lies with MRC, and not with the authors of this report.\ /
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IRREGULAR POINTS OF MODULATION

R. E. Meyer and J. F. Painter

1. Introduction

The general linear second-order equation

£2d2w/dz2 + q2w(z) = 0 (1)

with parameter £ and analytic coefficient function q(z) is central to a

vast clas of problems in the sciences. In turn, it has long been appreciated

that an understanding of the singular points and turning points of (1) is

central to the treatment of those problems, regardless of whether those points

occur at real z. Despite many studies, no complete theory of such points has

been achieved, perhaps, because (1) encompasses too many disparate phenomena

for a useful theory convering them all.

The present study focusses on those forms of (1) which can describe the

physical modulation of waves or oscillators. To attempt only one step at a

time, moreover, it excludes questions involving genuine coalescence of

singular points and also singular points of (1) artificially introduced as

representations of radiation conditions. This leaves a large class for study,

none the less, because the coefficient functions q(z) of (1) in the sciences

must be defined, if not by speculation, then by measurement, in which case

they can be known only imperfectly. The characterization of q(z) cannot

therefore be very specific and arbitrarily irregular points must be admitted

on physical grounds, particularly when they do not occur at the real values
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of z of direct physical meaning. Certainly, multivalued functions q(z)

must be the norm, rather than the exception. All the same, modulation implies

a certain structure for q(z) (Section 2).

The main objective of the following is to extend to the general

modulation equation the insight familiar from the theory of regular points

that the local structure of the singularity can be expressed by a fundamental

solution pair (wm , w s) of (1) associated with different 'exponents' or

'indices'. Thus, wm/Ws + 0 as the singular point is approached, so that

w,(z) has a milder singularity than w.(z). The structure of irregular

points can be described similarly by distinct singularities, one stronger

(Section 4) and the other, milder (Section 3), which are associated with a

fundamental solution pair constructed below.

In the general case of modulation, the coefficient function q(z) is so

poorly specified that the characterization of singularity structure cannot be

very specific either. For more concrete results, the general class of such

equations is therefore slightly restricted (Section 2) by the hypothesis that

a limit of

(dq/dz) fz q(t)dt

be identifiable as the singular point z = 0 is approached. This still

admits a much larger class than treated before [1] and makes possible a

representation extending the familiar one for regular points in terms of power

series commonly associated with the name of rrobenius [2]. The representation

established below is in terms of quasi-power-series with coefficients that are

themselves multivalued functions. The results reported concentrate on certain

aspects of those functions and on solution symmetries which are important for

the applications to scattering theory that motivate the present investigation.

-2-
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A clearer indication of the structure thus revealed will be aided by a

comment on the role of the parameter £ in (1), which is proportional to

Planck's h in the quantum-mechnical interpretation of that equation. The

results are local, in the first place, and as such, concern the "parameter-

less case" in which C is merely a fixed complex number (say, unity, without

loss of generality). Since all the proofs are on that basis, C could in

fact be regarded as excess baggage. Quite the opposite is true, however,

because let will reveal itself as a homotopy parameter linking irregular

points to regular ones and thereby, as a signpost to a broad avenue of

approach to a general theory of irregular points. For modulation equations,

moreover, C can also serve as an illuminating label for structural

distinctions even in the parameter-less case. They reflect a distinction in

the scientific meaning of the two terms of (1): the first -- or more

precisely, w- d 2w/d(z/e) -- represents the oscillatory mechanism of Newton's

law; by contrast, q 2(z) represents the material potential. This is a little

too naive, more rational variables x and Cx must be introduced (Section 2)

in the place of z/C and z, respectively, but those do turn out to play

fundamentally different roles of oscillation and modulation variables even in

the parameter-less case. A third reason for treasuring C is that the

structural results have a striking significance for the shortwave case

ICl << 1.

The distinction between the modulation role of z and oscillation role

of z/C in (1) is an echo of the distinction between 'gravitational' and

'inertial' mass discussed by philosophers of physics in the late nineteenth

century. It is therefore relevant to report that our comment on the benefits

of C ts purely mathematical hindsight. The present investigation set out

merely to establish semi-abstract existence constructions adequate to support

-3-
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a minimal connection theory (3] needed for scattering. That construction

revealed a striking 'two-scale' structure in terms of functions of x and

functions of Lx. The functions of x are related to powersi those of Ex,

by contrast, have a structure peculiarly different from powers, they are

multivalued 'mild' functions (Section 2) of a very general type including

logarithms as familiar examples. A two-scale structure is thereby really

implied only for the asymptotic representation (Section 5), which is

remarkable in providing information global in x, even though only local in

cx. Even in the parameter-less case, however, where our results are entirely

local, the label C helps to recognize the distinction between the role of

the mild functions and the power functions in the solution structure.

For regular points, certain exponent differences lead to the "Frobenius

exceptions" where the stronger solution contains logarithmic multiples of the

milder one. Analogous features arise for irregular points (Section 4), where

they are less pronounced because the structure is already pervaded by the

'mild', multivalued functions. However, they do spoil the symmetry of the

stronger solution (Section 5) for a non-generic subset of equations.

One would naturally wish to extend to general irregular points Langer's

I1] triumph of uniform approximation of solutions. It will indeed emerge

strikingly below how qeneral modulation equations are a direct extension of

Bessel's equation. Beyond his class of fractional turning points, however,

Bessel functions cannot serve as uniform approximands, because the branch

points are more complicated, and it is not readily apparent yet how far the

notion of uniform approximation could be extended to more general classes in a

practically useful way. To some degree, at least, the 'local' representations

established below do provide such an extension because they are global enough

to answer asymptotic questions [3].

-4-
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Good error bounds for the approximations proved below are also very

desirable, but it appears premature to consider them in detail in this first

foray. There are many indications that the formulation and results developed

below are not definitive, but merely document an open road not noticed

before. As it is explored further, better estimates will be found. Even the

present ones, however, are based on the method of Volterra equations normally

employed [4] to obtain error bounds, and to promote access to them, the symbol

6 will be used to denote the elements from which such bounds wuld have to be

assembled.

2. Modulation Equations

Equation (1) is only one of a family of normal forms of the general,

linear, second-order differential equation and constructive statements are

awkward and cumbersome in such an indefinite frame. By contrast, the

Lionville-Green or WKB or Langer variable x such that

dx/dz = iq/e

has long been recognized as the natural one for the description of waves or

oscillators; it measures length or time in units of (2w times) the local

wavelength or period, and physical specifications, e.q., radiation conditions

for scattering, relate directly to x or Cx. Any simple and practical

theory should emerge in terms of these variables, and continued reference to

the independent variable z can only obscure matters and will be abandoned

after this Section.

For y(x) = w(z), (1) transforms into

y" + 2fy' = y, 2f(x) =-icq-dq/dz (2)

which shows modulation to be controlled by the function f(x), rather than

by q(z) directly. It explains also why roots of q(z) ("turning points")

-5-
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which are ordinary points of (1) play the same role in the theory (41 as

singular points of q(z); all are singular points of the modulation function

f(x) and hence, are the singular points of (2) or of any other rational

formulation of (1) as an equation describing modulation of waves.

Since genuine coalescence of singular points (5] is excluded from

consideration here, each can be studied separately. This does not exclude

functions q(z;e) in (1) with pairs or clusters of singular points

approaching each other as lei decreases, provided only that they do not do

so too rapidly for a rescaling [6] to exist into a formulation (1) in which

they remain bounded apart independently of C. In order not to overload the

presentation here, the rescaling [6] is presumed a priori, and the remaining

dependence of q on C (which is then immaterial for what follows) is

ignored. Attention may then be directed to a single, singular point with an

C-independent neighborhood N free of others.

To define the subclass of equations (1) that can describe wave

modulation, two requirements now suffice. First, the natural variable x

must be defined, for otherwise, not even the concepts of wavelength or period

could exist for (1). Secondly, if q(z) be non-integrable at a singular

point, then that point corresponds to no ex e T and hence represents not a

genuine singularity of modulation, but a device for re-interpreting a

radiation condition as a singular point in the z-plane. This will be excluded

here to concentrate on the class of genuine modulation equations. For it, the

singular point z must correspond to a definite point Cx, and without loss

of generality, both may be identified with the origin, so that

ex - i f0 q(t)dt (3)

exists on a neighborhood N' C N of z - 0, even if not as a single-valued

function, and this is the main premise of the present study.

-6-



To make it effective still requires transformation to the framework of

the natural variables, and a preliminary remark on notation may be helpful.

Observe that (2) shows - f to be a function of z, not of z/E, and

therefore by (3), of ex, rather than of x. The primes in (2), of course,

denote d/dx, and thus y must be anticipated to be a function both of x

and of the parametric variable

Explicitly notation to that effect is cumbersome and technically redundant,

because the proofs below are for fixed C # 0, but perception of the

structure of the theory will be made easier by the convention that a notation

such as q(x) denoter a function that may depend also on while a notation

such as *( ) denotes a function (such as L-f) only of the modulation

variable e Lx.

Now, the &-image of N' will contain a disc about & = 0. Since the

analysis will be local in &, no generality is lost by subjecting its

radius E also to a bound E(Y) specified later for the convenience of the

estimates. This disc, with a cut, will be the C-domain A of the analysis;

the corresponding x-domain D is the cut disc of radius E/Jel. An intrinsic

statement of our premise (3) is therefore that a branch r(x) of q/2 must be

definable as an analytic function on D so that

idz/d& - r 2

is integrable to & - 0.

It may be conjectured that this physical hypothesis ia sufficient for a

theory of irregular points of modulation. To obtain more concrete results,

however, we add a second, lesser hypothesis that the function xf(x) =

(x/r)dr/dx which, like C If, depends only on ex, has a limit,

xf(. Y e as C + 0, uniformly in A

-I
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Accordingly,

q -=r(x) x P(Cx) (4)

and

(&/P)dP/d& = xf(x) - Y *( ) (5)

is analytic on A and

* 0 as + * 0, uniformly in A . (6)

In view of the restrictions to be placed on the radius E of A for the

estimates, no further loss of generality arises from assuming If(l)I also to

be bounded on A.

To interpret the second hypothesis, note that, apart from a constant

factor,

P(C) - exp ft T1 *(T)dT (7)

whence it follows from (6) that (E) is analytic on A and varies near

= 0 more slowly than any nonzero power of 9,

vv > 0, Ip pL + 0 as + 0 • (8)

The postulated limit Y is therefore the "nearest power" of x in r(x) =

!/2 (and q3/2 is recalled to be the familiar amplitude function of the WKB-

approximations for (1)). The integrability premise is now equivalent to

Re Y 4 2 (9)2

with an added restriction on P and f in case Re Y - 2. In turn, the term
2

"mild function" would seem apposite for any function *(E) sharing the

defining property of P(C) that it is analytic on A and (&/*)d*/dE + 0 as

0, uniformly in A, whence also (8) then follows for *.

For further interpretation, note that the singular point is regular for

C - 0 because then # 2 0 and the modulation function fVx) in (2) has a

simple pole. The irregularity function *(Cx) defined by the second

hypothesis, however vaguely, identifies a diffeomorphism linking the irregular

-8-
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points to regular ones. A mathematical role of homotopy parameter is thereby

revealed explicitly for Ii.

The class of singular points of Schroedinger equations admitted by the

two hypotheses includes very irregular ones, due to the unrestricted

multivaluedness of *(Cx) and hence, also of r(x) and q(z), in addition

to all the turning points of modulation covered in the literature. It extends

even the class of [71 (where only an asymptotic approximation for lxi + 0

and II + 0 is established) by abandonment of any restriction on how slowly

W ) + 0 with &. For Langer's [1) class of fractional turning points,

2y/( 2Y-1)
z q(z) is analytic and nonzero at z = 0,

I() = n(1-2Y)

n= 1

and the solutions of (1) and (2) are approximable in terms of Bessel

functions.

3. The Milder Solution

The regular singular points of (2) have Frobenius exponents or indices

[4, p. 150] 0 and 1 - 2Y and the auxiliary function z(x) which (3)

associates with each modulation equation (2) will turn out to generalize the

1 -2Y
Frobenius power x to irregular points. Indeed, by (3) to (6) and

L'Hopital's rule, as x + 0 in D,

x dz -icx + -id lim d(r-2x)/dx

r z x+O dz/dx(10)

= lim (1 - 2xf) = 1 - 2Y

x+O

so that

z(x) = x1 2 Y (Cx) (11)

and ( is mild:

-9-
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- (~ *0 as *0

uniformly in A.

The idea behind most of the estimates to follow is that such mild

functions can be controlled at the expense of arbitrarily small powers. For

instance, if

lub I*(ut) + ((u)I - 6I ()
ue(0,1)

(12)
6

P(U ut)u 1/[P1(1)1(] e WAU,)

then

le 1 for u e [0,1] and 61( ) * 0 as + * 0 (13)

because W and + * 0 with C and
dr

log eI (u,E) = -f [61 + *(r¢) + 
1(T€)] 

-

has non-positive real part. A restriction I&I < E with an E > 0 can

therefore assure 6 () < I and thereby, 6 + Re Y < 3/2, by (9).

Theorem 1. For II < E(Y) so restricted that

M - (3/2) - Y - 6 1(t) (14)

has positive real part (and at worst, ItI < E ), (2) possesses a solution

A 1-2y 2n5

ymlx) - z(x) (x) = x x) an (ex)(x/2)2n (15)
0

on D with z, C and 6 defined by (3), (11) and (12) and an given

recurs1ely by an = I and

anl9 )- 4 fl uf/ [ed (A'u) 2anl(AU)) 2M-3+2ndA

Proof. By (2) and (3), y(x)/z(x) - 4(x) obeys

- +2(f+ '/z) ' -- 0 , (16)

which will be satisfied by a differentiable solution of the Volterra equation

A f r(v)z(v)] 2(v)dv
0 r(x)z(x)"

(17)

A(x) - 1 + f, y'(v)dv

-10-
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Let m = Re M and

da n+ fx .rlv)zlv)] 2

~n1 ~ v zv)J 3 a (v)dv
dx 0 r(x)z(x) n (18)

a0  1 a n(0) = 0 for n > 1

then by (4), (11) and (12),

X-1 at+, =-f- 1 2 (9

al [el(u,3)u I an (ux)du (19)

and the restriction on EY) assures by (13) that

- 1 1
Ix-la1 ( (2m) -1  a1(x) = x cil( ), I (1 1/rn,

2n

and if an(x) = a (E)(x/2) with nl (E)l 4 k , that

I(x/2)-2n-1 a , l 4 kn/(m+n), anlX) = an+ (x/2)2n+2

-1 -1t
a n+l( )I k n(m+n) (n+1) = kn+ 1

Inductively, therefore

2n
a (x) = an ()(x/2) Ian ( )I 4 kn = r(m)/[nir(m+n)] (20)

and these bounds show the series I a'(x) of functions analytic on D ton

converge uniformly on compact subsets of D to a function A'(x) analytic

on D. The series an converges similarly to y(x), and summation of (18)

confirms that y(x) satisfies (17). The formula for a (E) follows from

(18) and (19).

Corollaries. Since z(0) = 0, by (3), also

M(0) = 0 ( (21)
I

For C 0 and Re Y < p, in which case the singular point is regular,

and a are constant and (15) is precisely the Frobenius series (4, p. 149]I n
for the solution of (2) with the property (21). (For Re Y = I, the

integrability premise does not admit E - 0.) For C $ 0, (F) and a 1 )n

are generally multivalued on full neighborhoods of the irregular point.

-11-



L'Hopital's rule show (Appendix 1) none the less that

nia (0) - r(! - y)/r(n +1 - Y)
n 2 2

The sense in which ')(x) tends to an even function of x as + * 0 wili be

discussed in Section 5. Summation of the bounds (20) for (15) yields growth

bounds

1--In 1x

lylxl/z(xl - 14(x) l < rlm) lx/21 I-1 Il

1d/dxl c r(m) lx/21 "I (Ix), a - -1- Re Y M11)m 2

for the milder solution Ym(x) in terms of modified Bessel functions [4,

p. 60]. They emphasize even further how the irregular points of modulation

concern generalization of Bessel functions.

4. The Stronger Solution
1

Theorem 2. If - - Re Y is not a positive integer and E is suitably
2

restricted, then (2) has a solution

y sx) - i B (Ex)(x/2)
2p

0op

analytic on D, with B0 = 1 and B (M) defined recursively by (23), (29)

and Lemmas 1, 2 below.

Remarks. Since ys(O) - 1, ys(x) represents a stronger solution. So

does Ys(x) + ay,(x) for any a e C, but the clearest representation of the

branch structure of the singular point will be by a fundamental system

(y,,y,) in which ye is free of such additive traces of the branch point

of ym" Comparison with Theorem I shows Theorem 2 to complete such a system

because 0 (0) exists and is nonzero (Appendix II) for all p ) 0. In fact,P

0 (0)(x/2) 2 p  is the power series of (28) below [4, p. 60], hut for
p

e 0 0, the B (E) are generally multivalued on a full neighborhood of the
p

-12-



irregular point. Summation of the bounds of Lemma 2 below again yields growth

bounds for ys and y' in terms of modified Bessel functions.

Proof. A twice differentiable solution ys(x) of

21y= x r2
r y (x) = r y(v)dv + const.

0

rxyl ()d
y(x) = 1 + y (v)dv

will satisfy (2). For Re Y 4 - ' however, the normalization to ys(O) = 1
2'

is seen by (5) to require a regularization of the first integral, and

different regularizations will add different multiples of the milder solution

to the stronger. A procedure avoiding it is to write this Volterra equation

as

r y'(x) = y(v)dv + C

Cx = f0 r2 (y-y)dv (22)

y(x) = 1 + fxy ,~dY(X) f 0y ,(v) dv

with a fixed regularization parameter X 9 0 and

2 f 2
YN(x= b (x), r b' = X r b (v)dv

0 (23)

Y-1 =  -1 0, b0  1, b (x) = fX b' (v)dv

p+l 0 p+1

for

1
0 p N -- Re Y < N+1 . (24)

2

This implies

(r2yT)I -r2y = -rb (25)
N N N

To describe the structure of YN for N ) 1, require 0 < IEXl < E to

assure definition of f(ex) for IxI 4 IXI and note that

lub I(lF)l = 6(ICXI) + 0 as IEXi + 0 , (26)
I&l<lcxl

-13-
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by (6), so that E 4 z2 with an E2 > 0 will assure 6 < 1. Appendix I

outlines a proof of

Lemma 1. For CI < E 2 and for I < p 4 N,

b (x) -B (C)(/2)p P

and Bp I k' - (k')P/pl with k'(Y) independent of x and X. If
p p

1
- Re Y is not a positive integer, the result remains true also for p =

N+1 for sufficiently small E(Y) > 0.

This shows y,(x) to be a 'polynomial' in x2 of degree N with

coefficients that are bounded, but generally multivalued, functions of

1
- Ex. For integer - -1 - Re Y, the bound on 1B0 I fails, indeed

2 N+1 1
(Appendix I), 0 (0) exists for 0 4 p 4 N+1 when - - - Re Y is not

p 2

integer, but only for 0 4 p 4 N when it is. For C - 0, in fact, yN(x)

is the sum of the first N terms of the power series of the solution

I 

lim y(x) - r(- + Y)(x/2) I W(x) (28)

22

of (2) for *( ) 0.

To attack (22), consider now a sequence

n
YnCx) -= Yx) + I b (x), n = N+1, N+2,...

p=N+l P

2 
(29)

bp (x) = I b (v)dv, b (0) - 0
p+1 0 r(x) p p+i

with 1  given by Lemma 1 and N defined by (24), so that

1
< N+ + Re Y and these integrals converge for p 0 N+, by (4) to (6).

Appendix II also gives a proof of

Lemma 2. If - 1 - Re Y > 0 and not integer and if IEI < E(Y) with
2

sufficiently small E(Y) > 0, then

-14-
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b (x) B ( )(x/2)2pP P

pilo I ( pIk' = (k')N+1r(N+i - s)/r(p-s)

for p A N+2, with

1
s8 - Re Y + 6() > 0A 2

(30)
62(6) lub If(u)l•

ue(o,1)

1 1
For < Re Y 2 the construction simplifies because no

regularization is needed. Then N = -1, yN = 0, b0 =1 and the same proof

leads to Lemma 2 for p > 1, except that s < 0 and

p k' - r(-s)/ (p-s) .I
p

The sequence (29) of functions analytic on D is therefore majorized by

the partial sums of a power series convergent for all x and converges

uniformly on compact subsets of D to a function ys(x) analytic on D,

which summation of (29) shows to satisfy (22).

For the sake of completeness, information on the nature of the stronger
1

solution for non-positive integer values of Re Y - I may be desired. For

£ = 0, where the singular point is regular, these are the exceptional

exponent differences [4, p. 150] for which the stronger solution has a
1

logrithmic branch point. For irregular points the case y = is somewhat

special because the integrability premise does not then admit £ = 0, but

assures ym(O) - 0, by contrast, the construction of the stronger solution
1 1

makes y,(0) - I also for Re y I. For Re Y 4 - j, a different

representation of the stronger solution can help to elucidate its nature.

Theorem 3. If

_ _ iz (r(vf2 b (v)y (v)dv (31)
dz C~ x)2 0 N m£( [y(x) ]

-15-



1
then yN(x) + g(x)ym(x) solves (2). For non-integer R - Re Y > 1, the

additional specification

P2x2Y-l[g(x)ym(x) - 8 +I(O)(x/2) 2N +2 ] + 0 as x + 0

makes y, + gym identical with the stronger solution of Theorem 2.

Proof. For any twice differentiable function g(x), g(x)y (x) solves

2 2 - 2 2
r (gy)']' = r gym + yI (r ygl)'

because ym(x) satisfies (2). The definition of dg/dx - g'(x) by the
thorman ()mae 22,, 2 m

theorem and (3) makes (r y2g 2 r bN and by (25), therefore, YN + gym

solves (2) and must be a linear oombination of ym and ye. But, g(x) can

be examined with the help of Theorem I and Lemma I (Appendix II)i
1

Lemma 3. For non-integer I - Re Y > I,

x -2N-2g(x)y3 (x) m W 4"- N+1 (0) as x + 0 ,

with N defined by (24) and N+1(0), by (A).

Since N ) 0 and yN(O) - b0 - 1, it follows from (21) that YN + gym

represents a stronger solution y of (2) normalized to y(0) - 1. From (24),

moreover, 2N+2 < 1 - 2Re Y < 2N+4, while Theorem 1 shows ym(x) O(x 1-2Y),

so by Lemma 3, yN + gYm represents the same solution as Theorem 2 up to

terms o(x2N+2 ). The choice of additive oonstant in g(x) specified in

Theorem 3 extends this agreement sufficiently, by (10) and Theorem 1, to

preclude a difference of a nonzero multiple of y,(x) between the stronger

solutions of the two theorems.

While Lemma 3 holds only on strips of it, (31) is defined by Theorem I

1
and Lemma I in the whole left half-plane of Re Y - - and- there depends

2

analytically on Y, by (2) and (5), when x, E and #() are fixed so that

yMCx) 0 0. In the strips, the proof of Lenna 3 (Appendix II) shows

(x/g)dg/dx + 2N + 2Y + I - 2V as x + 0 ,

and as Re v + 0 so that the righthand strip boundary is approached, g(x)

-16-



is seen to approach a function varying less than any nonzero power of x

(although it approaches a strictly mild function only as v + 0,

1
Y - - + integer). Thus g(x) extends the logarithms of Frobenius [4, p.1501

2

to more general, irregular points; in the special case where

P(C) * P(0) # 0, as for a fractional turning point and in particular, for a

regular point, equation (All) below shows g(x) to have a purely logarithmic

1
branch point when Y - - is a negative integer.

2

5. Symmetry Bounds

The coefficient of (10) depends continuously on £, at any fixed x # 0,

by (3) to (6), and as C + 0, the equation approaches a form of Bessel's with

solution

lim y(x) = r(I - yxl2)Y-C/2I (x)

C=O 2 1/2-Y

normalized to y(O) = 1. At the same time, the restriction on lxi

disappears that had been needed to respect the merely local definition of

so that D expands to the whole, cut plane of x. As 0,

therefore, y(x) = ym/z tends to an even analytic function of x on any

1compact C C. The same is true of ys(x), by (28), as long as - - Re Y is

not an integer. It is of considerable interest that these remarks can be

sharpened to detailed bounds on the oddness of the solutions for nonzero

e A, which can serve as foundation of a theory of asymptotic connection

[3]:

-Wi
Theorem 4. For x and xe in D and E(Y; restricted as for

Theorem 1,

ly(x) - y(xe-i)I 6 mlIj)rlm)jx/2 2-mIC lxi)

and + *0 as 0 .*.

m

-17-

# .. ...
,, ' p . - . . . .- , w :... ' L : -" -



Here a - (3/2) - Re Y - 51(E), as in Theorem 1, with 6 defined by

(12), and I denotes again the modified Bessel function [4, p. 6011 a proof

is given in Appendix I. In case the relation of the order m of the Bessel

function to the variable E be considered more confusing than useful, it is

of course permissible to proceed from (12) with 61 replaced throughout the

proofs by

6,(Y) = lub )

to obtain Theorem I with M - (3/2'i . and Theorem 4, with

m - 3/2 - Re Y- .

For fixed e 6a, the oddness of ym/z - 9(x) can therefore grow at

most exponentially with Ixl.

The worst part of our story is a proof (Appendix II) of a similar bound

on the first N terms of the stronger solution for Re Y 4 -3/2 (for

Re Y > -3/2, yN(x) is strictly even because y-1 S 0, y0  1):
-Wi

Lemma 4. For x and xe in D and sufficiently restricted E(Y),

IyN(x) - YN(xe )I < 8;(I&t) [ [k'(Y)(x 2/41]P/(p-I)f
1

and 6 + 0 as I+ 0.
5

Finally, the bound is extended in Appendix I to the stronger solution:

1 -Ii
Theorem 5. For non-integer - - Re Y, x and xe in D and

2

sufficiently restricted E(Y),

ly (x) - y(xe-t )1 4 cl) s(II)lx/21 2+sI(-Xl x)

and 6 * 0 as I ! + 0.5

Here a is again defined by (30), but the same proof also yields the

Theorem a fortiori with

II
sa Re YV + lub l*(E)l

For integer j-Re Y'> 0, however, Theorem 3 and Lemma 3 show Theorem 5

to fail. -18-



Appendix I

To compute the limit of a (C) as E + 0 in A, note that MO = 1 by

definition and suppose that a %i1(0) exists for some n )' 1. By L'Hopital's

rule applied to (20),

a (C) + (2 2n1/n) liii [a'(x)/x 2n1J as + 0
x+0

if that limit exists. In turn, by the same rule applied to (18),

x 1-na'(x) + 2 2-nlim( f r 2z 2v 2n2a dv/(x 2n1r 2z2H
nt 0n-

w2 2-nlim[a - /(2n-I + 2xr'/r + 2xz'/z)J

and by (4) to (6) and (10),

a (0)/0(0) -n -1 1n+ Y -1

Proof of Theorem 4. From (18) if e-r be abbreviated by j and if

x and ix eD,

at(x) +1 jx) - fx. l(Ev~zv~j 2 a v i-( (iv)z(iv) 12a j)d

a'1 (x) +1 ' r(x)z(x) n r(jx)z(jx) n

and by (4), (11) and (12),

r(v)z(v)/(r(x)z(x)] - e1(,)

By (5) and (11),

r(jv)z(jv) Z (x)z(x) . e utt)
r(v)z(v) r(jx)z(jx) e

A -,C fiUt io -do+ f -(Cdo

WE d(log PC)Id& t~ + L(O

Therefore

a; (x) + a' +(Jx) a x f e 2u 2-Y2 (a (ux) -a (jux)
0~ 1+ n0 (Al)

+ a n(Jux)(1 - exp, Xu&)d

and mince P and C are mild, both 1A( ) and, for u e (0o,1]

-19-



fog- i. I,(Ileo) . (luCI e)de

tend to zero with C, so that also

8(il) " lub lub I1 - exp 2X(u,t)l + 0 as ICI + 0

ItlICI ue[o,l1

Since ao - 1, (Al) gives x(a;(x) + a;(x)I (6/m with

m - Re N - (3/2) - Re Y - 61 as in Theorem 1, and it now follows recursively

from (Al) and (20) that

1 -2n2
t(x/2) 1 a'(x) + al(Jx)1 I 1 n2 6 k

I n m n

I(x/2) 2n (a (x) - al(jx)ll n 6 kn n m n

and Theorem 4 follova from (20) and Theorem 1.

-20-



Appendix II

Proof of Lemma 1. From (23), (4) and (5),

bx) = r2 dv = x 1 [2 u 2Y+26du
b1 ()  r 2  X fX/x [2(u[

(A2)

e2(u,&) - exp f[(t) - 61 d- .

Choose arg X so that jarg [ - arg(EX)l 4 N for all E e A (Figure 1) and

the path in (A2), so that u& moves on an arc of constant modulus from LX

to 9' - ICXlexp(i arg t) (Figure 1) and thence, radially inward to E. For

u& on this path P,

le2 1 4 exp(w
6 )

with 6 defined by (26). For fixed 4, u moves also along a path partly at

constant modulus and partly radial, and since N ) 1 confines our attention

to Re Y 4 -3/2, the restriction I&I < E2  assures

S1 =Re S > 0 for S, = -Y-- 6  (A3)
1 1 2

and from (A2)

- 2S1 -I
x -b(x) = 1x/x [e2(-1 ,)]2t dt

1 1 2t

with path again partly radial and partly around (at most half of) the unit

circle, and it follows for Jx/XJ 4 1 that

t161 2S1 -1 1

Ix-1 b;(x)l 4 e It dtl 4 1 k0

By (23), therefore, 14 (x) I k If p- ()(x/2)2

moreover, then again by (23),
= 2P 2B lug)u 2 (y+6+p-1)d

(J)2p-'b;(x) - 2 fX1/X e2 p_ ,  du

S22S2+-2p

fl e2BS (E/t)t 1 dt
1 2 p-l

and the restriction J I < E2  assures for p 4 N that

2s + I - 2p > 1 - 26 > -1, by (24) aid (A3). Therefore

-21-
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Figure 1
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1(2/x)2p-1 b'(x)l 4 2e2W6 lub I 1 2s1+1"2p
p I41cexl p - 1  0t

and if 1 1 - k' andpi p-i

k' -2e 216  max f1 it 2s1-1-2ndtl
1(n(N-1

with path as before, then

(2/x)2Pb p(x) p(), 10 ( klk'_l/p = k' , (M)

and for p ( N, the Lemma follows by induction.

For non-integer - - Re Y, (24) implies N + Re Y < -< , so by (A3),
22

2s - 1 - 2N + 26 = -2(N+1 + Re Y) > -1 and for fixed Re y, (26) shows an

E(Y) > 0 to exist which makes also 2s, - 1 - 2N > -1. The integral for

(2/x)2P'Ib'(x) then exists also for p = N+1 and (4) remains valid with
p

k' maximized over 1 ( n 4 N.

While the rough bound (4) suffices for present purposes, it

underestimates the decrease of 1 pi with increasing p. A more

representative indication of it is obtained by computing 8 (0): As + 0,P

by Lemma I and L'Hopital's rule,

8 (t) + 2 2p-1 -1 lim [x 1 -2pb (x)]
p x 0

if that limit exists, and from (23), (5) and (6),

x -2pb'(x) = (r-2 x -2p) fX r2b dv
p fx p-i

2-2p lim (0 P1)/(2p - 1 + 2xr'/r)]
x+0

= 1-2p (0)/p + Y 1

if that exists. Since 80  1 1, it follows that

8P(0) = p (p + Y 2), 1

1
provided Y - - is not a negative integer, and then by induction

2

pt o (0) = r( + y)/r(p + + Y) (6)

-23-
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I
for all p ) 0. In any caa.e, (24) implies N + + Re Y ( 0 so that the

induction yields

pt 0p(0) - (-1)Pr(! - y - p)/F( 1 - Y) for 0 'p 4 N (A?)

even when Y - - is a negative integer, but 8+(0) is then seen not to
2 N+1

exist.

Proof of Lemma 2. By (6),

2 8 A - lub I*( )I .0 as E + 0 (A8)eA
1

and for fixed Re Y < -< , a sufficient restriction of E(Y) assures s > 0.

If again

b_(x) - (9)(x/2) 2_p k'

for some p ) N+2, then from (29), (4) and (7),

- 2(Y-16 +p-l)

b'(x) - 2(/)( u&)0 (O du,
p 03 (u P-1~(u)

u82 'U dr

S3(u,C) - u 2 0W)/P() - exp jl 1 & (T)]

and by (30),

Ie3(u,1) C 1 for u e (0,1] o (A9)

For p ) N+2, (24) implies p-1 > -.1 - Re y and therefore also

Re Y - 82 + p - - p - I - s > 0 for fixed Y and sufficiently small

RI > 0. Hence,

I(x/2)1-2Pbpl 4 k'./(P-l-s)

and by (29),

1(2/x)}2pb I k' I/[p(p - I - s)] - ' 1A0)p p
and Lemma 2 follows inductively from the bound for b,+ 1 of Lemma 1.

Proof of Lemma 3. By Lemma I and (3), (4) and (15), the definition (31)
1

may be written, with N + + V-V, as

-24-
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x 1 -2 v2 2 N ( x 2 X 2 - r 2 2 1 4 1 d
2 dx 2

A 0 v N
r zy

2 2N-1 i 1-2Y = (0)0 s x (All)
C N+l N CN #0a

by (10), (17) and (A7). Since (24) implies -1 < Re V 4 0 and since P is

mild, dg/dx ts seen not to be integrable to x =0 unless Re v = 0 and

P(&) + 0 as & + 0.

For Re V < 0, L'Hopital's rule may therefore be applied to p 2x 2v/g

and yields, by (All), (5) and (6),

P2 x2vg+ i 2xP' dg/dx_+ 2'v .2
P x /g' 1-2V 2/N

-2 1-2dg/dx

as x + 0, and by (All), (x/g)dg/dx + 2v, which therefore represents the

nearest power in g(x). It then follows from (4), (10), (11), (M6) and (All)

that

-2N-2 -2V
x g(X)y (X) ;A~x

+ N -4-N- (0)
21v(1-2Y) N+l

as x + 0.

Proof of Lemma 4. From (23), for 1 (p N defined by (24), and again

*with exp(-ri) j,

p p jrv) r~)12bp( d + fiv)tr~Ll)
b'(v) + b(jv f rd) + ( jX rj) b1 (s)ds

=(v/2) 2p-1 (1I + 1 2 + 13

2p-l
f.v 1- (a V .~](b (t) - b 1 (jt~ldt

Ir(v) r(j) )b b (jt) dt

2(v (v rX r(t) 2 () ~ ) -
3p- fj' X r(jv) p-2

To obtain bounds on these integrals, note from (4) and (5) that, if Lv, Cuv,

jCv and j~uv Are all in ~

-25-



.... . . . . . ..- -. .. . . .. .

log r(Juv)r(v) . fev l(T)-f(jT) dTogr(uv)r(jv) " Juv T d

- fi *(Cv a f(euvo) dO - 0(u,ev)

say, and i i ( 5( cXj), by (26). If ev and Cuv lie on the path P of

Figure 1 from to CX, then the integral may be evaluated along the

appropriate part of P and from the first form of e, the circular part is

seen to contribute at most 2wS to 181. From the second form, the

contribution of the radial part is seen to have the same bound, and together

101 4S ,

a 3 (IcxI) - lub lub i - e 2 + 0 as ICXI < 0 (A12)

I&I'ICxi P

Moreover, if 0(Cs)/P(jCv) e4 (Cs,Cv) is considered for Cv e t and

s - jX~exp i0, 0 > a > -W, then (Figure 1)
SIcvlexp iC d+ IEXI i(e dT

log e 4 4 J ()) - +  v #-"

and by (30), (26) and (6),

le 4 1 4e Ix/vI
(A13)

C4(I I) = lub 2 (E) + 0 as I I + 0
arg

From Lemma 1, b (x) - b (jx) (C)(x/2) and if it be now

supposed that 1 i(W C (p-1)A 1 k'_, then by (4) and (A2)esupposed2 tht[ J (-) - '(++p

II - 21J'/v [e2 (u
ev)]2 (UV'U2(Y++P-l)dul

21 
kl 22p-2S 

-3
2e 2W (p-1) x p- _  X/v Iu I dul

with S 1 defined by (W3), so that again Re S 1 + 1 - p 7 1 - 8 > 0, by (24)

and if E(Y) is restricted as for the first part of Lemma 1. As in the proof

of that Lema, therefore, it is deduced that

11l 1 (p,, -1pk' k _ I •

-26-
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Similarly, by (A12) and as in the proof of Lemma 1, if k' - lub lB I as
p p

there defined,

JIII - 21fx e2 {1 - e28(u'cv)}B.(Jcuv)u2(Y+S+P-1)dul

21 X/x 2 --

I 3 k' p 3k. 1  •

With path at constant Iti = lxI,
S jjx/v j-2w 2p 21

13 2 X/v [ e4(Ct'Cv)] - (ct)(t/v) 2(Y+P-I) d(t/v)

and again with s, - Re SI - -Re Y - - 6,

21w6 2(s1+1-p)1131( 21e 
4k'_ Iv/XI

Therefore
3

bCx) - b (Jx) - II(v 2 v 4)*

with

lB (3)l- 2p (ux)u-dul

211 2W6 4 2(s1 +1-p)
[(-Ix + k_+ e k...11x/XI

2w 22s4 _ ( p Ix/)

"k;[(p-1)A Pl + 63 + ;--7 e

by (A4). Since A0 M 0 because b0 (x) B 1, it follows recursively for

1 4 p 4 N that

b (x) - b(jx) - B(&)(x/2) 2 p , lBI ( pX k' (A14)
p p p p p p

IC (6 2 1 2w84 
2 (s +I-P) [ + 2 x 2

p 3 k'(s 1+1) x p x

4 2p-2

p X px

where it should be recalled from (24) and Lemma I that

0 < 1 - 6 ( a1 + I - N < 2 - 8 and k' - [k'(Y)1 /pt
p

Finally,

N 2p N 2p
Iy (x) y y(x)I - 1 1( 1 pApkp 2 1 ° (AS)

2N-1 2

-27-



To prove Lemma 4, it therefore remains to establish a bound ' on
s p

which tends to zero with I&J. For sufficiently small lx/Xl,

411 2(stI+I-P)
p < 63 (jCXj) + kS+l) Ix/Xi (A16)

by (A13), and E(Y) has been restricted so that sI + I - p > 1 - 6 > 0 for

1 4 p 4 N, with 6 defined by (26). The requirements on the regularization

parameter lXI used so far are that it be independent of x and that

10 4 lCXl < E(Y), the radius of the cut disc A on which the estimates

hold. For fixed Y and E(Y), envisage now a sequence of subdiscs about

= 0 of radius JCXn I < E(Y) and tending to zero as n + 0, and consider

any point sequence Ui ) C A such that Ei I + 0 as i + . Given n, the

n-th subdisc will contain all ti with sufficiently large i and there is a

subsequence {n(i)} wuch that n(i) + 0 and Ix /X n(i) + 0 as i + -. For

all 1EJ 1 ~J, regularization can be achieved with the choice JXn() I for

lxi, and the bounds (A12) and (A16) then imply a sequence {6i decreasing

towards zero as i + 1 and such that X < 6 for I ' REi I andp i1

1 4 p 4 N. A monotone positive function 6'(I t ) therefore exists such that

A < 6'(1 1) for 1 4 p C N and 6'(1) 0 as 1I/E + 0 . (A17)
p s

Proof of Theorem 5. By Lemma 1, the computation of bp (x) for p 4 N
1p

from (23) extends to p - N+1 when - - Re Y is not integer. In that case,
2

1
(24) implies - - Re Y N+A with A(y) > 0, and for sufficiently small

lCXe si - N A - 6 > 0, by (26), and the estimate (A14) then extends also

to p - N+1. For p > N+2, on the other hand, b is found from (29j and

Lemma 2, so that then
(v). v(rt)-- 2 - tr(jv)]2p1 j ) d

b'(v) + b'(Jv) b ( Ct) - .r(it) p_,(Jt)ldt

p p 0 r(v) p-i (iv -

again with j exp(-Wi). As in the proof of Lemma 2,

-28-
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r(t)/r(v) = (t/v) 2 e 3(t/v,Cv),

and as in the proof of Lemma 4,

lgrCjt)r(v) . fl O(eva)-O(Cta) d (/~v
ogr(t)r(jv) i a O=et/,v

and if v and jv are in D and t/v = u e [0,13, then this integral may

be evaluated at constant 1o to see by (30) and (6),

le(u,ev) I 4 21TS2(F-v) ,

(A18)

ub lub 11 - exp 20(u,cv)l = 6s"(Il) + 0 as M + 0

Iv0x( ue[0,12

Now suppose 
( ) x 2 p 2 1 X k

b p-1 (x) - bhp- (jx) = -1 a 1( (p -1 lp
which is known for p-1 =N+1 from the extension of (A14), then since

b'v)+ '061 =Vf e2 b N -e20(u,cv) b (juv)}u 2Y-26 2du
b'Vp + b(v =v 0 e3 bpl ) I e p_ 1

and by Lemma 2, for p N+2,

12fl2 26 2 (P1+Y-6 2

2)l2[b'(v) + b'(jv)] = 2 f1 e3 _1 + (1 - e2) l}u du
20 3 p-I p-

where again p - I - 6 + Re Y = p - 1 -a > 0 for fixed Y and sufficiently
2 2

small Ifl > 0, by (24) and (30). By (A9), (A10) and Lemma 2, therefore

l(v/2) 1-2p[b;(v) + b'(jv)ll ( pk'[lp-1)Xp_I + 6"]s

b p(x) - bp (Jx) = 0p(&)(x/2) 2  ,

l IC k'[(p-)xp 1 + 6"]
pp pi s

It now follows recursively from (A14), (A17) and (A18) that

I0 I ( 6 (II ppkp for all p ) 1, with
P S P

6 (1I) - max[ 6 "(IMI), 6 "(1l&) + 0 as + 0

Prom Theorem 2, therefore

lY (x) - ys (jx)l 4 68 (ICI) pkIx/212p

-29 1
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with k' given by Lemmas I and 2 for p 4 N+I and p ) N+2, respectively,P

so that

pk"lx/2I2p C ClY)lx/212 i Ix/21 2n /nr(n+1-s)]
1 p 0

for some C(Y) independent of x.
1 1

For I > Re Y > - , the proof simplifies because Lemma 4 is not needed,
22

and the same result is obtained with C(Y) r r(-s) and 8 - 3'.

-30-
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